スキップしてメイン コンテンツに移動

もうひとつの Nikaido Lab. が始動します

ろくに更新していないこのブログで公表するものどうかと思いましたが、SNS以外で個人の立場として近況を書けるところはここだけなので、ここに書きます。

2020年4月1日より、国立大学法人 東京医科歯科大学 難治疾患研究所 ゲノム応用医学部門 ゲノム機能情報分野の教授職を拝命致しました。東京医科歯科大学 大学院医歯学総合研究科 修士課程 医歯理工保健学専攻/博士課程 生命理工医療科学専攻 ゲノム機能情報の教授も兼務し、教育にも従事します。理研のラボも残しつつ2組織3拠点体制で研究、それに教育に励んでいきます。

両方で研究をすることを許して頂いた理研と大学の関係各位に深く御礼を申し上げます。またPI不在が多くなるにも関わらず、いろいろと工夫してラボ運営や研究に参加してくれている理研のメンバーにも大変感謝しています。また事前にお知らせしたかった方々も大勢おりましたが、ばたばたしており直接お話できずに申し訳ありません。

ゲノム分野の新しいバイオインフォマティクス技術は、ゲノム科学の新しい計測技術の側に現れます。その理由は新しいデータには新しいデータ科学の課題があるからです。そのデータの側にいればまっさきにアクセスできオリジナリティを発揮しやすくなります。しかし、それだけではありません。そもそも、データをどのように出すべきなのか、あるいは、データ解析技術を前提すれば新しい計測技術が作れないか(計算と計測の融合)、という1歩、2歩と踏み込んだバイオインフォマティクスとゲノム科学の関係が最先端の研究現場にはあります。このようにして生み出された技術は、新しい生命現象を観測し解き明かし、やがては疾患の理解や制御、診断に役に立つでしょう。

理研ではこのような立場から新しい1細胞RNA-seq法とそのデータ解析技術を開発し、社会実装もしてきました。これは異なるタレントの研究者が揃って共同し生み出せたものです。しかし、アイディアの量に対して人材は常に少ない状況です。また大きなプロジェクト(と家庭と任期)を抱えている研究員では、なかなか気軽にいろいろなことを試すのが難しい状況もあります。このような背景から、研究速度や規模が圧倒的に速くなっているゲノム科学やそのバイオインフォマティクス研究で、国際的な存在感を出すことが難しくなっています。

ここ数年は、このような研究に興味を持ち参加してくれる人を待ち、時には啓発しきましたが、その一方、自分達で若く柔軟で身軽な学生さんを研究現場で育成するのがよいのではないかと感じるようになってきました。そんな折りに今回のポストに採用して頂きました。

国立大学法人 東京医科歯科大学は、Tier1の国立医大で優秀な研究者や学生、臨床医が集まっています。難治疾患研究所は1973年から続く伝統のある研究所で、治療や予防が難しい疾患を対象に様々な分野の基礎研究者が集まり、研究を行う大学附属研究所です。また臨床の部局とともに難治性疾患の克服も目指しています。もちろん、研究を担う人材の育成も行っています。我々もより臨床に近い場所で、我々の技術をどのように活かすのか、どのような技術が必要なのかを念頭に置きながら研究教育に邁進したいと考えています。

大学のラボのウェブサイトも作ってみました。研究内容の概要や研究に参加したい方はどうぞご覧ください。
https://nikaidolab.org/

ちなみに最近の理研のラボの状況はこんな感じです。ご無沙汰の方は以下もご覧ください。
https://bit.riken.jp/

では最後に定番の謎のURLを張っておきます。大人のみなさまは上のURLより下のURLをクリックしましょう。
https://www.amazon.co.jp/hz/wishlist/ls/22I8BVBTWDOUQ?type=wishlist&filter=unpurchased&sort=price-asc&viewType=list

コメント

このブログの人気の投稿

シーケンスアダプタ配列除去ツールまとめ

FASTQ/A file からシーケンスアダプター配列やプライマー配列を除くためのプログラムをまとめてみる。 まず、配列の除去には大別して2つの方向性がある。ひとつは、アダプター配列を含む「リード」を除いてしまう方法。もうひとつは除きたい配列をリードからトリムする方法である。後者のほうが有効リードが増えるメリットが、綺麗に除ききれない場合は、ゲノムへのマップ率が下がる。 気をつける点としては、アダプター/プライマーの reverse complement を検索するかどうか。paired end の際には大事になる。クオリティでトリムできるものや、Paired-end を考慮するものなどもある。アダプター/プライマー配列の文字列を引数として直接入力するものと、multi fasta 形式で指定できるももある。 From Evernote: シーケンスアダプタ配列除去ツールまとめ TagDust http://genome.gsc.riken.jp/osc/english/software/src/nexalign-1.3.5.tgz http://bioinformatics.oxfordjournals.org/content/25/21/2839.full インストール: curl -O http://genome.gsc.riken.jp/osc/english/software/src/tagdust.tgztar zxvf tagdust.tgz cd tagdust/ make sudo make install rehash 使いかた: tagdust adapter.fasta input.fastq -fdr 0.05 -o output.clean.fastq -a output.artifactual.fastq 解説: 入出力形式は fastq/a が使える。リード全体を除く。速い。アダプター配列を fasta 形式で入力できるのが地味に便利で、これに対応しているものがなかなかない。Muth–Manber algorithm (Approximate multiple

ChIP-seq の Peak calling tool を集めたよ

ほかにもあったら教えてください。プログラム/プロジェクト名がツールのプロジェクトサイトへのリンク。その論文タイトルは論文へのリンクになっています。 ツール名の50音順です。 CCCT -  A signal–noise model for significance analysis of ChIP-seq with negative control , chipdiff と同じグループ CisGenome -  CisGenome: An integrated software system for analyzing ChIP-chip and ChIP-seq data . ChromSig -  ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. ChIPDiff -  An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data ChIP-Seq Analysis Server FindPeaks -  FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Version 4.0 is out. GLITR -  Extracting transcription factor targets from ChIP-Seq data HPeak -  HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data MACS -  Model-based Analysis of ChIP-Seq (MACS). PeakSeq -  PeakSeq enables systematic scoring of ChIP-seq experimen

ふりかえり

2013年4月に独立して7年目が終わろうとしている。ざっくりこれまでの研究を振り返る。 2013年から2017年の4年はフルスタックのゲノム科学、ゲノムインフォのラボを立ち上げることに集中していた。しかも人様が作った技術のユーザとして研究するのではなく、新しい技術を開発できるラボを目指した。ウェットの開発については、ドライのPIであっても本物を創りたいと考えたので世界最強や唯一の技術を目指した。特に1細胞ゲノム科学に注力した。そのためにまずグラントを取り仲間を集め技術を作った。幸いウェットは元同僚を中心に、ドライはドクター新卒の優秀な人材に囲まれた。並行して開発した実験やデータ解析技術を応用するため、データ生産や共同研究を支えるチームも作った。 2015年ぐらいからドライの論文が少しずつ出始め、2018年にはウェットのフラッグシップとなる技術RamDA-seqとQuartz-Seq2の2つ出版された。2021年1月現在、これらはそれぞれ世界唯一と世界最高性能の2冠である。これが達成できた大きな理由のひとつは、反応原理を徹底的に理解し制御するというチームやそのメンバーの特性にある。ここは世界最高レベルだと確信している。 2017-2018年はラボの移転がありウェットの開発や実験が大きく停滞した。その間ドライのチームががんばってくれて2019-2020年にはドライ研究の収穫の時期がきた。またRamDA-seqの試薬キット化・装置化、Quartz-Seq2とそのデータ解析技術での起業、実験試薬や道具の上市など社会実装の年でもあった。実験が少なくなった分、ウェットのメンバーの解析技術がかなり向上した時期でもある。これはウェットとドライがうまくコミュニケーションできる証拠でもある。 2019-2020年はウェット技術のフラッグシップを駆使した共同研究がいくつか花咲いた。主に「再生医療分野」への応用と「細胞ゆらぎと転写制御の謎」に迫る基礎的なテーマが対象で、もともと1細胞ゲノム科学を始めたときに目標としたものだった。 並行してゲノムデータの科学計算環境のインフラ開発に注力してきた。beowulf型PCクラスタからクラウドの移行やハイブリッド化、DevOpsによる自動構築、ワークフロー言語の導入、動的レポート生成などの導入・開発を行いこれらを日常的に使うラボになった。これらはNI