スキップしてメイン コンテンツに移動

ChIP-seqの統計解析のレビュー読んだよ

超並列型短鎖DNAシーケンサーのデータ解析に関する論文を淡々と読んでます。その名もNGS論文100本ノック。普段はEvernote にメモしているのですが、少しずつ公開していきます。

ポリシー



  • 自分が思い出すために必要な情報をメモるだけよ
  • 知ってることはあまりメモしないよ
  • 必要な論文だけ読むよ (ChIP-seq, RNA-seq を中心に)


つまり人に読ませるつもりで書いてません、ごめんね。

今回の論文


1. Ghosh, D. (2010). Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data. Genes.

サマリ


112報の論文を参考にシーケンスプラットフォーム概要から mapping, ChIP-seq, RNA-seq の統計処理までをレビューした総説。シーケンスの実験クオリティの評価方法については議論されていない。話もざっくりなのでさらっと読める。RNA-seq の部分は流し読み。

Mapping について


マッピングには大別すると hash table と BWT ベースの方法の2つ。前者の hash table と検索速度のトレードオフがある。後者の suffix array を BWT で作ってインデックスをはる。mapping の良さは mappability score で評価する。Mappability score については以下の論文を参照。

Li, H., Ruan, J., & Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores Genome research, 18(11), 1851-1858. doi:10.1101/gr.078212.108

Mapping tool については以下の論文を読めばいよいらしい。
Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing Briefings in bioinformatics, 11(5), 473-483. doi:10.1093/bib/bbq015

ChIP_seq peak calling


ChIP-seqの peak calling のアルゴリズム大別して3つ。タグカウントの移動平均をベースとした方法 (F-seq, QuEST)、確率モデルを使う方法 (CisGenome, BayesPeak)、より複雑な方法(HMMなど)。

F-seq アルゴリズムの説明が微妙なので元論文を読む。ようはタグカウントの分布をカーネル密度推定(Univariate kernel density estimation)する方法で、カーネルには Gaussian kernel を使っている。

2. Boyle, A. P., Guinney, J., Crawford, G. E., & Furey, T. S. (2008). F-Seq: a feature density estimator for high-throughput sequence tags Bioinformatics (Oxford, England), 24(21), 2537-2538. doi:10.1093/bioinformatics/btn480

確率モデルを使う方法では、確率分布には Gamma-Poisson distribution (いわゆる negative binomial distribution) を使う。MACSのなかのひとが poisson distribution のパラメータ λがデータと合わないと言いだして、peak ごとにローカルなλを仮定した。まあだったらλを非負の確率変数と考えて Gamma-Poisson distribution を使えばよいわけで、これを始めたのが CisGenome, BayesPeak の2つとか。Peak calling の今後の課題としては mappability score を考慮した peak calling, FDRの計算手法の改善などがある。

Peak calling アルゴリズムの比較
Laajala, T. D., Raghav, S., Tuomela, S., Lahesmaa, R., Aittokallio, T., & Elo, L. L. (2009). A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments BMC genomics, 10, 618. doi:10.1186/1471-2164-10-618

Wilbanks, E. G., & Facciotti, M. T. (2010). Evaluation of algorithm performance in ChIP-seq peak detection PloS one, 5(7), e11471. doi:10.1371/journal.pone.0011471

Peak calling 後の解析


その後の解析について。binding site と遺伝子アノテーションの統合、TFBS (Transcription Factor Binding Site) の予測、いわゆるDNAモチーフ解析がある。(もうひとつ重要なことがあると思うけど書いてないね)。

Annotation Tool


Shin, H., Liu, T., Manrai, A. K., & Liu, X. S. (2009). CEAS: cis-regulatory element annotation system Bioinformatics (Oxford, England), 25(19), 2605-2606. doi:10.1093/bioinformatics/btp479

Blahnik, K. R., Dou, L., O'Geen, H., McPhillips, T., Xu, X., Cao, A. R., Iyengar, S., et al. (2010). Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data Nucleic acids research, 38(3), e13. doi:10.1093/nar/gkp1012

Salmon-Divon, M., Dvinge, H., Tammoja, K., & Bertone, P. (2010). PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci BMC bioinformatics, 11, 415. doi:10.1186/1471-2105-11-415

レビューには出てこないけどこれもある。
Zhu, L. J., Gazin, C., Lawson, N. D., Pages, H., Lin, S. M., Lapointe, D. S., & Green, M. R. (2010). ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data BMC bioinformatics, 11, 237. doi:10.1186/1471-2105-11-237

TFBSの解析は de novo motif 解析と既知の motif 配列の enrichment をみる解析の2通りがある。前者はこれを読んでおけばだいたいOK

Tompa, M., Li, N., Bailey, T. L., Church, G. M., De Moor, B., Eskin, E., Favorov, A. V., et al. (2005). Assessing computational tools for the discovery of transcription factor binding sites Nature biotechnology, 23(1), 137-144. doi:10.1038/nbt1053

ただ古いレビューなので、ChIP-seq のために高速化されたり新しい手法を実装したツールも紹介されている。

Hu, M., Yu, J., Taylor, J. M. G., Chinnaiyan, A. M., & Qin, Z. S. (2010). On the detection and refinement of transcription factor binding sites using ChIP-Seq data Nucleic acids research, 38(7), 2154-2167. doi:10.1093/nar/gkp1180

レビューには登場しないがこれもそうか。

Sharov, A. A., & Ko, M. S. H. (2009). Exhaustive search for over-represented DNA sequence motifs with CisFinder DNA research : an international journal for rapid publication of reports on genes and genomes, 16(5), 261-273. doi:10.1093/dnares/dsp014

残り98報。つづく。

このブログの人気の投稿

Quartz-Seqで1細胞/微量RNA-Seqを始めたい方へ

はじめに 新しい高精度な1細胞RNA-Seq, Quartz-Seq論文を出してから、各方面から多く相談を受けています。
Sasagawa Y and Nikaido I, et. al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biology. 14. 2013 
そこで、新しく1細胞RNA-Seqを始める方へ、僕達が理想だと考えている技術導入の手順を紹介したいと思います。また我々の方法は1細胞(6-14 pg Total RNA)だけでなく pg-ng オーダーの少量RNAからシーケンスが可能です。そのような方も以下の手順が参考になると思います。 0. 1細胞/微量RNA-Seqが本当に必要なのか検討する 1細胞/微量RNA-Seqでは、現時点でQuartz-Seqが世界最高の性能を持っている訳ですが、十分なサンプルを用意し、通常のRNA-Seqしたほうが、より精度の高いデータが得られます。なので、基本的には、サンプルをたくさん集める方法をしっかり検討すべきです。まずは、戦略面と技術面で1細胞/微量RNA-Seqが本当に必要かを検討する基準について書きます。 0.1. 戦略面での検討 あなたが抱えているプロジェクトが、1細胞/微量RNA-Seqでなければアプローチできないかどうかを問い直すことが重要です。
基本的には以下の2つの状況で、1細胞/微量RNA-Seqが役に立ちます。
a. 細胞状態が連続的に変化し、さまざまな細胞状態が、細胞集団に含まれている場合 (振動現象、ゆらぎなど) b. 細胞状態を特定するマーカーがほどんどわかっていない場合
最初から細胞状態が2状態しかないことが明らかで、しかも細胞状態を代表する遺伝子が分かっている、という状況では、FACSなどで cell sorting し、目的の細胞を採取することを考えるべきです。そして、微量RNA-Seqや通常のRNA-Seqで、しっかりと biological replication を取る方が良いでしょう。微量になると、テクニカルなノイズが増えるために、生物学的な差を知るためには、n を…

シーケンスアダプタ配列除去ツールまとめ

FASTQ/A file からシーケンスアダプター配列やプライマー配列を除くためのプログラムをまとめてみる。

まず、配列の除去には大別して2つの方向性がある。ひとつは、アダプター配列を含む「リード」を除いてしまう方法。もうひとつは除きたい配列をリードからトリムする方法である。後者のほうが有効リードが増えるメリットが、綺麗に除ききれない場合は、ゲノムへのマップ率が下がる。
気をつける点としては、アダプター/プライマーの reverse complement を検索するかどうか。paired end の際には大事になる。クオリティでトリムできるものや、Paired-end を考慮するものなどもある。アダプター/プライマー配列の文字列を引数として直接入力するものと、multi fasta 形式で指定できるももある。

From Evernote: シーケンスアダプタ配列除去ツールまとめTagDust
http://genome.gsc.riken.jp/osc/english/software/src/nexalign-1.3.5.tgz http://bioinformatics.oxfordjournals.org/content/25/21/2839.full
インストール: curl -O http://genome.gsc.riken.jp/osc/english/software/src/tagdust.tgztar zxvf tagdust.tgz cd tagdust/ make sudo make install rehash
使いかた: tagdust adapter.fasta input.fastq -fdr 0.05 -o output.clean.fastq -a output.artifactual.fastq
解説: 入出力形式は fastq/a が使える。リード全体を除く。速い。アダプター配列を fasta 形式で入力できるのが地味に便利で、これに対応しているものがなかなかない。Muth–Manber algorithm (Approximate multiple string search) を利用。FDRを指定できる。GPL3