スキップしてメイン コンテンツに移動

Rパッケージが Bioconductor に採択されるまでの顛末

R には CRAN というパッケージ集がありますが、ライフサエンス分野専門のパッケージ集に Bioconductor というものがあります。Core developer team のメンバーは、Rの core developer team と一部メンバーが被っています。

Bioconductor は CRAN と比較すると、詳細なコードレビュー/ドキュメンテーション(もちろん英語の)が必要など、わりと厳しめの採択基準があります。これまで、日本人でBioCに採択された人がいなく情報があまりませんでした。このたび、BrainStars for R というパッケージが Bioconductor 2.10 に採択され公開されました。その顛末を公開して、日本のすぐれたプログラムが Bioconductor に採択されることをエンカレッジできればと思います。

開発

このあたりは、BioCのパッケージガイドラインサブミットガイドラインを読むと一通り書いてあります。またパッケージングについては、以前のエントリを参照ください。

R でいまどきなパッケージ開発 (devtools, testthat, roxygen2)

R5 reference class 編: R でいまどきなパッケージ開発 (devtools, testthat, roxygen2)


上のリンクで書かれていないことでBioCでポイントとなるのは、コーディングだけじゃなくて、すべての関数に対する Rd で書かれたマニュアルと、パッケージの使い方が書いた vignette というドキュメントが必要になることです。マニュアルには、動作するサンプルコードが必要になります。vignette には、パッケージの背景や、チュートリアル形式でその使い方を英語で書く必要があります。この文章は Sweave 形式で書く必要があり、TeX, Sweave の知識が必要になります。vignette のなかにも動作するサンプルコードが必要になります。

マニュアル、vignette のコードが動作しない場合、正常にパッケージングできないので、BioC のパッケージは必然的にドキュメントの質が高くなります。これは作り手にとっては大変ですが、ユーザにとっては助かりますよね。

NAMESPACE の書きかたが CRAN と少し違います。個人的にはNAMESPACEだとほかのパッケージとの依存する部分について少しはまりました。これが参考になります。 http://bioconductor.org/help/faq/#developer-faq

開発の様子は、github のログを見てください。
https://github.com/dritoshi/BrainStars-for-R/commits/master

サブミットの顛末

ラボノートから時系列にイベントを抜粋します。

2012/01/27

最初のsubmission。Marc Carlsonさんにメールすると issue tracking system のアカウントが発行される。ここに自分の開発したパッケージファイルをアップロードする。パッケージガイドラインに書いてないステップ。ここで、R-devel での動作チェックをしておくように言われた。これもパッケージガイドラインに書いてない。これが地味に面倒。R-devel + BioC-devel 環境を用意しておく必要がでてくる。Amazon EC2 にそれようの AMI を作って動作確認した。

2012/02/21

レビューが返ってくる。かなりコードもドキュメントも読まれている。ドキュメントはよく書けているとのことでほっとした。コードは大別して2点のつっこみ。

0. 低レベル関数をラップして、ひとつの関数にまとめ、オプションで動作を切り替えるようにしろ、という指示。Rails の動的ファインダメソッドのノリで、対象ごとに関数があったほうが好きなんだけど、GEOquery とか参考にして、直せということだったので、その通りに。でもユーザが両方を選べるよう低レベルな関数も export したままにする。この判断が採択を遅くすることになるとは。。。

1. 関数がJSON を返すのが気にいらないらしい。一般的な R のデータ型にするようにしろということらしい。JSON のほうがデータ取り出しやすいんじゃないの? とおもったけど、この時点で、変態なのは俺だと気付いた。BioCチームの徹底的にユーザ指向という姿勢が伝わってきたので、すべて指示に従うことに。

バージョンのつけかたが、0.99.x にしろという指示。これについてもパッケージガイドラインに書いていなかった。今は書いてある。あと、S4で書いてたんだけど、必然性なくない? と言われて、S4やめて書き直した。これでコードが 2/3 ぐらいになった。

2012/03/03

2nd submission

2012/03/06

3日で、2nd review が返ってくる。低レベルの関数を残しておいたのが気にいらないらしい。全部 export しなくした。

2012/03/07

採択通知がくる


2012/03/15

BioC 2.10 の SVN に取り込まれる。自分で SVN にコミットする必要はない。このときバージョンが 0.99.x のままだが、BioC 2.10 がリリースされるときに自動的に1.0.0 になる。これもカイドラインに書いていない。
https://readonly:readonly@hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/BrainStars/


2012/03/19

devel のウェブサイトに掲載。リリースサイクル的にぎりぎりだと思ったが BioC 2.10 に取り込まれるのが確定した。
http://www.bioconductor.org/packages/devel/bioc/html/BrainStars.html


2012/04/03

BioC 2.10 リリース。もちろんBrainStars for R もリリース


まとめ

BioCのチーム感じるのはユーザ指向の姿勢ですね。S4 classes や reference class (R5) などで実装したとしても、そこは隠蔽して、一般的なユーザからは、普通の(ラッパー)関数をひとつ使えばその機能が使えるようにすることを推奨しています。実際に、ほかのパッケージのコードを読むとそのようになっていることが多いです。

英語がネイティブではない日本人にとってはドキュメンテーションの duty が重いのがつらいところだと思います。いまどきだと、github などでコードを自由に簡単に公開することができるのですから、わざわざ BioC のようなレビュー付きのパッケージレポジトリに採択される必要がないのかもしれません。でも、レビューによって得る経験はより良いコードを書けるようになるための糧になると感じました。みなさんも BioC の採択を目指しましょう!

最後に、BioCチームに感謝。

コメント

このブログの人気の投稿

シーケンスアダプタ配列除去ツールまとめ

FASTQ/A file からシーケンスアダプター配列やプライマー配列を除くためのプログラムをまとめてみる。 まず、配列の除去には大別して2つの方向性がある。ひとつは、アダプター配列を含む「リード」を除いてしまう方法。もうひとつは除きたい配列をリードからトリムする方法である。後者のほうが有効リードが増えるメリットが、綺麗に除ききれない場合は、ゲノムへのマップ率が下がる。 気をつける点としては、アダプター/プライマーの reverse complement を検索するかどうか。paired end の際には大事になる。クオリティでトリムできるものや、Paired-end を考慮するものなどもある。アダプター/プライマー配列の文字列を引数として直接入力するものと、multi fasta 形式で指定できるももある。 From Evernote: シーケンスアダプタ配列除去ツールまとめ TagDust http://genome.gsc.riken.jp/osc/english/software/src/nexalign-1.3.5.tgz http://bioinformatics.oxfordjournals.org/content/25/21/2839.full インストール: curl -O http://genome.gsc.riken.jp/osc/english/software/src/tagdust.tgztar zxvf tagdust.tgz cd tagdust/ make sudo make install rehash 使いかた: tagdust adapter.fasta input.fastq -fdr 0.05 -o output.clean.fastq -a output.artifactual.fastq 解説: 入出力形式は fastq/a が使える。リード全体を除く。速い。アダプター配列を fasta 形式で入力できるのが地味に便利で、これに対応しているものがなかなかない。Muth–Manber algorithm (Approximate multiple ...

ChIP-seq の Peak calling tool を集めたよ

ほかにもあったら教えてください。プログラム/プロジェクト名がツールのプロジェクトサイトへのリンク。その論文タイトルは論文へのリンクになっています。 ツール名の50音順です。 CCCT -  A signal–noise model for significance analysis of ChIP-seq with negative control , chipdiff と同じグループ CisGenome -  CisGenome: An integrated software system for analyzing ChIP-chip and ChIP-seq data . ChromSig -  ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. ChIPDiff -  An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data ChIP-Seq Analysis Server FindPeaks -  FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Version 4.0 is out. GLITR -  Extracting transcription factor targets from ChIP-Seq data HPeak -  HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data MACS -  Model-based Analysis of ChIP-Seq (MACS). PeakSeq -  PeakSeq enables systematic scoring of ChIP-seq experimen...

ふりかえり

2013年4月に独立して7年目が終わろうとしている。ざっくりこれまでの研究を振り返る。 2013年から2017年の4年はフルスタックのゲノム科学、ゲノムインフォのラボを立ち上げることに集中していた。しかも人様が作った技術のユーザとして研究するのではなく、新しい技術を開発できるラボを目指した。ウェットの開発については、ドライのPIであっても本物を創りたいと考えたので世界最強や唯一の技術を目指した。特に1細胞ゲノム科学に注力した。そのためにまずグラントを取り仲間を集め技術を作った。幸いウェットは元同僚を中心に、ドライはドクター新卒の優秀な人材に囲まれた。並行して開発した実験やデータ解析技術を応用するため、データ生産や共同研究を支えるチームも作った。 2015年ぐらいからドライの論文が少しずつ出始め、2018年にはウェットのフラッグシップとなる技術RamDA-seqとQuartz-Seq2の2つ出版された。2021年1月現在、これらはそれぞれ世界唯一と世界最高性能の2冠である。これが達成できた大きな理由のひとつは、反応原理を徹底的に理解し制御するというチームやそのメンバーの特性にある。ここは世界最高レベルだと確信している。 2017-2018年はラボの移転がありウェットの開発や実験が大きく停滞した。その間ドライのチームががんばってくれて2019-2020年にはドライ研究の収穫の時期がきた。またRamDA-seqの試薬キット化・装置化、Quartz-Seq2とそのデータ解析技術での起業、実験試薬や道具の上市など社会実装の年でもあった。実験が少なくなった分、ウェットのメンバーの解析技術がかなり向上した時期でもある。これはウェットとドライがうまくコミュニケーションできる証拠でもある。 2019-2020年はウェット技術のフラッグシップを駆使した共同研究がいくつか花咲いた。主に「再生医療分野」への応用と「細胞ゆらぎと転写制御の謎」に迫る基礎的なテーマが対象で、もともと1細胞ゲノム科学を始めたときに目標としたものだった。 並行してゲノムデータの科学計算環境のインフラ開発に注力してきた。beowulf型PCクラスタからクラウドの移行やハイブリッド化、DevOpsによる自動構築、ワークフロー言語の導入、動的レポート生成などの導入・開発を行いこれらを日常的に使うラボになった。これらはNI...