スキップしてメイン コンテンツに移動

R + Bioconductor で遺伝子構造を描く

From Evernote:

Rで遺伝子構造を描く

超並列DNAシーケンサーの登場で、遺伝子構造など、ゲノム上のイベントやオブジェクトのデータを大量に得ることができるようになってきました。データ解析にとって可視化は重要ですが、ゲノム上で起きているイベントなので、ゲノム上に配置して可視化したい場面がよくでてきます。しかし、さまざまなゲノム上のオブジェクトをゲノム座標から画像座標に変換して、絵を書くのは意外と面倒な作業です。

例えば遺伝子構造の絵を書こうとします。これは、遺伝子構造をどのように入手するか、遺伝子構造をどのように描くか、の2つの問題に分けることができます。ここでは、遺伝子構造のデータは、R + Bioconductor の biomaRt パッケージを使って、Ensembl Biomart からダウンロードすることで解決します。遺伝子構造をどのように描くかについては、GenomeGraphs パッケージを利用します。

まずはインストールします。

$ sudo R
> source("http://www.bioconductor.org/biocLite.R")
> biocLite("biomaRt")
> biocLite("GenomeGraphs")

ここでは、Ensembl biomart からヒトの SMN1 という splicing 異常によって疾患になる例が知られている遺伝子名(Gene symbol)の遺伝子構造を描きます。

まず、SMN1 という名前から、Ensembl Gene ID と染色体位置などを入手します。

library(GenomeGraphs)
library(biomaRt)

gene.symbol <- "SMN1"
png.file <- paste(gene.symbol, ".png", sep = "")

## construct an object of Human Ensembl Biomart
human <- useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

gene <- getBM(
     attributes = c('hgnc_symbol', 'ensembl_gene_id', 'chromosome_name'),
     filters = 'hgnc_symbol',
     values  = gene.symbol,
     mart    = human
)

ensgene.id <- gene[,2]
chr.num    <- as.character(gene[,3])

次に、Ensembl Gene ID から Ensembl Gene の構造情報(染色体名とその exon/intron の位置) を入手します。また、これに対応する Ensembl Transcript のリストとその構造も入手します。

## Get annotation of Ensembl Gene
gene <- makeGene(id = ensgene.id, type = "ensembl_gene_id", biomart = human)
transcript <- makeTranscript(
     id      = ensgene.id,
     type    = "ensembl_gene_id",
     biomart = human,
     dp      = DisplayPars(plotId = TRUE, cex = 0.5)
)

遺伝子構造を描画するまえに、染色体の大雑把な位置を把握するための ideogram を描くため、Ideogram object を作ります。黒と白の縞々のアレですね。遺伝子の位置には赤い透明なボックスを描きます。

## Create an ideogram object for the entire chromosome
ideog <- new("Ideogram", chromosome = chr.num)

## Create a highlight of the gene position on the ideogram
## using "absolute coordinates"
highlight.posi.on.ideo <- makeRectangleOverlay(
     0.60, 0.65,
     region = c(0.75, 0.82),
     coords = "absolute",
     dp = DisplayPars(alpha = .2, fill = "red")
)

最後に、遺伝子、転写産物、ideogram をまとめて PNG file に出力します。

## Create the plot
png(png.file)
gdPlot(
     list(
       makeTitle(gene.symbol),
       "Chr"         = ideog,
       "Gene"        = gene,
       "Transcripts" = transcript
     ),
     overlays = list(highlight.posi.on.ideo)
)
dev.off()

完成した図は以下のようになります。便利ですねー。

参考URL:

コメント

このブログの人気の投稿

シーケンスアダプタ配列除去ツールまとめ

FASTQ/A file からシーケンスアダプター配列やプライマー配列を除くためのプログラムをまとめてみる。 まず、配列の除去には大別して2つの方向性がある。ひとつは、アダプター配列を含む「リード」を除いてしまう方法。もうひとつは除きたい配列をリードからトリムする方法である。後者のほうが有効リードが増えるメリットが、綺麗に除ききれない場合は、ゲノムへのマップ率が下がる。 気をつける点としては、アダプター/プライマーの reverse complement を検索するかどうか。paired end の際には大事になる。クオリティでトリムできるものや、Paired-end を考慮するものなどもある。アダプター/プライマー配列の文字列を引数として直接入力するものと、multi fasta 形式で指定できるももある。 From Evernote: シーケンスアダプタ配列除去ツールまとめ TagDust http://genome.gsc.riken.jp/osc/english/software/src/nexalign-1.3.5.tgz http://bioinformatics.oxfordjournals.org/content/25/21/2839.full インストール: curl -O http://genome.gsc.riken.jp/osc/english/software/src/tagdust.tgztar zxvf tagdust.tgz cd tagdust/ make sudo make install rehash 使いかた: tagdust adapter.fasta input.fastq -fdr 0.05 -o output.clean.fastq -a output.artifactual.fastq 解説: 入出力形式は fastq/a が使える。リード全体を除く。速い。アダプター配列を fasta 形式で入力できるのが地味に便利で、これに対応しているものがなかなかない。Muth–Manber algorithm (Approximate multiple

ChIP-seq の Peak calling tool を集めたよ

ほかにもあったら教えてください。プログラム/プロジェクト名がツールのプロジェクトサイトへのリンク。その論文タイトルは論文へのリンクになっています。 ツール名の50音順です。 CCCT -  A signal–noise model for significance analysis of ChIP-seq with negative control , chipdiff と同じグループ CisGenome -  CisGenome: An integrated software system for analyzing ChIP-chip and ChIP-seq data . ChromSig -  ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. ChIPDiff -  An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data ChIP-Seq Analysis Server FindPeaks -  FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Version 4.0 is out. GLITR -  Extracting transcription factor targets from ChIP-Seq data HPeak -  HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data MACS -  Model-based Analysis of ChIP-Seq (MACS). PeakSeq -  PeakSeq enables systematic scoring of ChIP-seq experimen

ふりかえり

2013年4月に独立して7年目が終わろうとしている。ざっくりこれまでの研究を振り返る。 2013年から2017年の4年はフルスタックのゲノム科学、ゲノムインフォのラボを立ち上げることに集中していた。しかも人様が作った技術のユーザとして研究するのではなく、新しい技術を開発できるラボを目指した。ウェットの開発については、ドライのPIであっても本物を創りたいと考えたので世界最強や唯一の技術を目指した。特に1細胞ゲノム科学に注力した。そのためにまずグラントを取り仲間を集め技術を作った。幸いウェットは元同僚を中心に、ドライはドクター新卒の優秀な人材に囲まれた。並行して開発した実験やデータ解析技術を応用するため、データ生産や共同研究を支えるチームも作った。 2015年ぐらいからドライの論文が少しずつ出始め、2018年にはウェットのフラッグシップとなる技術RamDA-seqとQuartz-Seq2の2つ出版された。2021年1月現在、これらはそれぞれ世界唯一と世界最高性能の2冠である。これが達成できた大きな理由のひとつは、反応原理を徹底的に理解し制御するというチームやそのメンバーの特性にある。ここは世界最高レベルだと確信している。 2017-2018年はラボの移転がありウェットの開発や実験が大きく停滞した。その間ドライのチームががんばってくれて2019-2020年にはドライ研究の収穫の時期がきた。またRamDA-seqの試薬キット化・装置化、Quartz-Seq2とそのデータ解析技術での起業、実験試薬や道具の上市など社会実装の年でもあった。実験が少なくなった分、ウェットのメンバーの解析技術がかなり向上した時期でもある。これはウェットとドライがうまくコミュニケーションできる証拠でもある。 2019-2020年はウェット技術のフラッグシップを駆使した共同研究がいくつか花咲いた。主に「再生医療分野」への応用と「細胞ゆらぎと転写制御の謎」に迫る基礎的なテーマが対象で、もともと1細胞ゲノム科学を始めたときに目標としたものだった。 並行してゲノムデータの科学計算環境のインフラ開発に注力してきた。beowulf型PCクラスタからクラウドの移行やハイブリッド化、DevOpsによる自動構築、ワークフロー言語の導入、動的レポート生成などの導入・開発を行いこれらを日常的に使うラボになった。これらはNI