スキップしてメイン コンテンツに移動

Rで常微分方程式を解いてみた.Michaelis-Menten kineticsを例として

Rはもっぱら統計解析にのみ使っていたのだけど,[[@T_Hash|http://twitter.com/T_Hash/statuses/687249842]]にRで数式解けるの? みたいな==挑戦状==質問をされたのでやってみた.Runge-Kutta-Gill 法で[[Michaelis-Menten kinetics|http://en.wikipedia.org/wiki/Michaelis-Menten_kinetics]]の連立微分方程式を解いてみる.

参考: [[R で微分方程式:odesolve|http://clinical-pk-pd.cocolog-nifty.com/blog/2007/11/r_odesolve_fe42.html]]

ode solverはRのライブラリ[[odesolve|http://cran.r-project.org/src/contrib/Descriptions/odesolve.html]]に実装されているのでまずはインストールする.

install.packages("odesolve")
コードは以下の通り.
<<<
library(odesolve)

dydt <- function(t, y, p){
k10 <- p['k10']
k01 <- p['k01']
k20 <- p['k20']
E0 <- p['E0']

y1 <- -k10*E0*y[1]+(k10*y[1]+k01) *y[2]
y2 <- k10*E0*y[1]-(k10*y[1]+k01+k20)*y[2]
y3 <- k20*y[2]

list(c(y1,y2,y3))
}

params <- c(k10 = 1e3,
k01 = 1,
k20 = 0.05,
E0 = 0.5e-3)
times <- c(0, 0.1*(1:250))
y <- lsoda(c(1e-3,0,0), times, dydt, params)

S <- y[,2]
ES <- y[,3]
E <- params['E0'] - ES
P <- y[,4]

matplot(times, matrix(c(S, ES, E, P), ncol=4),
type="l",
ylab = "concentration (M)",
xlab = "time (s)"
)
legend(20,1e-3, c("[S]", "[ES]", "[E]", "[P]"), pch="-", col=c(1:4))
>>>
すると以下ような図ができる.簡単に解説すると、lsoda関数が ode solverである。この関数は初期値、時間、微分方程式のリスト、そしてパラメータが格納されたベクトルを引数にとる。結果としてそれぞれの時間での解が返される。

{{image 0, '画像の説明', nil, [400,400]}}

コメント

このブログの人気の投稿

シーケンスアダプタ配列除去ツールまとめ

FASTQ/A file からシーケンスアダプター配列やプライマー配列を除くためのプログラムをまとめてみる。 まず、配列の除去には大別して2つの方向性がある。ひとつは、アダプター配列を含む「リード」を除いてしまう方法。もうひとつは除きたい配列をリードからトリムする方法である。後者のほうが有効リードが増えるメリットが、綺麗に除ききれない場合は、ゲノムへのマップ率が下がる。 気をつける点としては、アダプター/プライマーの reverse complement を検索するかどうか。paired end の際には大事になる。クオリティでトリムできるものや、Paired-end を考慮するものなどもある。アダプター/プライマー配列の文字列を引数として直接入力するものと、multi fasta 形式で指定できるももある。 From Evernote: シーケンスアダプタ配列除去ツールまとめ TagDust http://genome.gsc.riken.jp/osc/english/software/src/nexalign-1.3.5.tgz http://bioinformatics.oxfordjournals.org/content/25/21/2839.full インストール: curl -O http://genome.gsc.riken.jp/osc/english/software/src/tagdust.tgztar zxvf tagdust.tgz cd tagdust/ make sudo make install rehash 使いかた: tagdust adapter.fasta input.fastq -fdr 0.05 -o output.clean.fastq -a output.artifactual.fastq 解説: 入出力形式は fastq/a が使える。リード全体を除く。速い。アダプター配列を fasta 形式で入力できるのが地味に便利で、これに対応しているものがなかなかない。Muth–Manber algorithm (Approximate multiple

DNAを増幅するサーマルサイクラーを自作してみたよ

DNAをPCR法で増幅するために必要なサーマルサイクラーを自作してみました。自作と言っても、いわゆる、PCの自作と同じでパーツを組み立てていく感じです。購入から組み立ての様子を簡単に紹介します。 モチベーション ラボには様々なレクリエーションがあります。例えば、単にどこかに遊びに行ったり、スポーツ大会したり、ひたすら合宿形式でプログレスのプレゼンをするミーティングするなどがあります。それもよいのですが、せっかくなので、普段の研究時間ではトライできないが、研究に関わる hack を行う、というイベントを企画してみました。夏休みの自由研究や社会科見学的なノリです。   うちのラボでは、PCRを使ったウェットの実験技術の開発をしてきました。しかし、サーマルサイクラーのハードウェアの仕組みを体験的に理解している訳ではありません。そこで、サーマルサイクラーを作ってみました。   欧米で始まっている、自宅のガレージやキッチンでバイオロジーを行うムーブメント、バイオパンク、DIYbio を体験しておきたいというのもありますし、Arduino などオープンハードウェア、Maker のムーブメントを体験するのも目的の一つです。ハードウェア開発が思っているほどハードルが下っていることを体験できて、かつ、将来、ウェットの開発だけでなく、装置開発などもできたら、ラッキー、ぐらいの気持ちでやってみました。   購入 今回作ったのは、組み立て式で、かつ、仕様などや設計図が公開されているOpenPCRというサーマルサイクラーです。ハードウェアの仕様・設計図、制御ソフトウェアなどの情報がすべて公開されており、部品からも自作することが可能です。今回は、「設計図から部品や回路のパーツを作り、それらを組み立てる直前のもの」を購入しました。   ChaiBio https://www.chaibio.com/   OpenPCR https://www.chaibio.com/products/openpcr   なぜか http://openpcr.org/  で購入できなかったので、eBay にある ChaiBio で買いました。   OpenPCR - eBay http://www.ebay.com/itm/111096418574   本体価格は

大学の研究室でアカデミックプランが使えるICTツール

自分らでサーバ管理したくないので、SaaS系とローカルで動くソフトのみ。ローカルで動くソフトに関しては、Mac or Docker で動くもののみ。 無償 G Suite for Education  (ドキュメント共有、カレンダーなど) GitHub Education  (ソースコード管理) esa.io アカデミックプラン  (知識共有) Tableau  (データ可視化) Scrapbox  (知識共有) GROWI.cloud  (Wikiなど) 割引 Slack の教育支援プログラム  (ビジネスチャット) Dropbox Education  (ファイル共有、ドキュメント共有) Office 356  (オフィスソフト) Adobe Creative Cloud  (画像編集) AutoDesk for Education  (CADなど) これから申し込んでいくところなので、本当に使えるかはわかりせん。使えた使えないなどの情報やほかのツールでお勧めがあれば教えてもらえると嬉しいです。 アカデミアでなくても無料で使えるツールのうち、うちで使うであろうものは以下に列挙していく。 Google Colaboratory  (データ解析) Overleaf  (論文執筆) Rstudio  (開発, データ解析) VS code (開発)